

Future Materials Issues for Synchrotron Science

John F. Mitchell

Materials Science Division

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Goals

Highlight some ways that synchrotron x-rays might help the materials grower

Suggest some possible materials directions that will impact correlated electron studies

Floating-Zone Crystal Growth

Advantages

- •Containerless growth = reduced contamination
- Large (cm³) crystals can be obtained
- Excellent for high melting point materials (e.g., oxides)
- •Huge success list: cuprates, manganites, titanates, vanadates, cobaltites, ruthenates, etc.

QuickTime™ and a YUV420 codec decompressor a

How SXR Might Help

- Real time monitoring of crystal growth
- "Phase spread" analysis
- Analysis of small crystallites

Real Time Monitoring of Crystal Growth

Can a FZ furnace be put on a beamline? If so, should it be?

- Image or monitor grain development and growth
- Know immediately if second phases are precipitating
- Real time composition analysis with high spatial resolution

Examples:

- -ESRF ID-19 $KAl(SO_4)_2$ xtal topographic monitoring
- -Lysozyme growth [Acta Cryst. 95, 650 (1999)]
- -APS MOCVD ferroelectric films

Exploiting the Zone Distribution

We like to study doped crystals

- •For homogeneous crystals, we want to C/C₀~1
- Opportunity to study "phase spread" in a single growth
- Need high spatial resolution, means to validate chemistry

Why?

Phase diagram of bilayer manganites, La_{2-2x}Sr_{1+2x}Mn₂O₇

 $x in SrO \cdot (La_{1-x}Sr_xMnO_3)_2$

- •Large crystals for x < 0.6
- •"junky" crystals for x > 0.6
- •But this is a really interesting area!

- Magnetic structures
- Diffuse magnetic scattering (element specific)
- Competition with SNS?

Extreme Sensitivity to Oxygen Content, Order

Spin states in Co³⁺ compounds

Hybrid Materials: Control of Interface Orbital Polarization

Y. Konishi et al. JPSJ 68, 3790 (1999)

SXR Opportunities:

- Interface magnetism
- Resonant scattering -OO at interfaces?

Put complex materials on same footing as metallic multilayers

Active Control:

Prototype CMR-Piezoelectric Hybrid

D. Dale et al. APL 82, 3725 (2003)

FIG. 2. R vs time, measured along the in-plane (100) of LSMO on BTO. The 1 kV/cm poling field was turned on and off at 12 and 24 h, respectively.

Poling of BaTiO₃ (BTO) piezoelectric results in decreased resistivity. SXR Opportunity: Need to better understand complexity of the interface, since BTO twinned.

> Field-Effect Doping: C.Ahn et al. Nature Aug 28, 2003

Alternative Materials Opportunities

Metal-Insulator Transition
Charge Order
Magnetism
Spin-Peierls Transition
Ferroelectricity
Superconductivity
Magnetoresistance

Doping
Structural modifications
Response to fields

Organics!

d-Orbital "doping" in 1-D (DI-DCNQI)₂Ag_{1-x}Cu_x

- Molecules stack parallel to c
- Metal links chains in 3-D
- •MIT as function of Ag/Cu

d-Orbital "doping" in 1-D (DI-DCNQI)₂Ag_{1-x}Cu_x

Cu⁺ d to organic π manifold better overlap than Ag⁺ = more three-dimensional

T. Itou et al. PRL 889, 246402 (2002)

 π -d states in Coulomb-gapped insulator

Phase Control by Chemical Modification

Modifying deuterium content in κ-(BEDT-TTF)₂[N(CN)₂]Br drastically impacts electronic states

H. Tanaguchi et al. PRB 67, 014510 (2003)

Cooling Rate Dependence in High Field Slow: Superconductor - Metal Fast: Superconductor - Insulator

Subtle rearrangement of BEDT-TTF impacts *U/W* near first order SC-AFI boundary

Organics and Manganites: A Parallel?

Mahendiran et al. PRL 89, 286602 (2002)

<u>Ultra-sharp magnetization steps</u> reflect phase segregation

 $Pr_{0.65}(Ca_{v},Sr_{1-v})_{0.35}MnO_{3}$ --FM/CO-AFI

Organic salt --AFI/PM (?)

August 28-29, 2003

An Opportunity for Synchrotron Science

Experiments Related to Organics/Correlated Electrons (includes fullerenes)

	1999	2000	2001
ALS	1	1	6
APS	0	3	2
NSLS	?	4	?
SSRL	?	4	2
Synth. Met. (ISI count)	1466	445	1348

Source: Data available at facility websites (Activity Reports, Publication Lists)

Summary

Symbiosis between materials growth and scattering science

- Push envelope in in-situ studies of xtal growth
- •Don't rely on cm³ crystals
- Bring bulk science to interfaces
- Look beyond traditional "hard" materials Organic chemistry is extremely rich, high
 level of stoichiometry, structure control

